Inversion of Large-Support Ill-Posed Linear Operators Using a Piecewise Gaussian MRF - Image Processing, IEEE Transactions on

نویسندگان

  • Mila Nikolova
  • Jérôme Idier
  • Ali Mohammad-Djafari
چکیده

We propose a method for the reconstruction of signals and images observed partially through a linear operator with a large support (e.g., a Fourier transform on a sparse set). This inverse problem is ill-posed and we resolve it by incorporating the prior information that the reconstructed objects are composed of smooth regions separated by sharp transitions. This feature is modeled by a piecewise Gaussian (PG) Markov random field (MRF), known also as the weak-string in one dimension and the weak-membrane in two dimensions. The reconstruction is defined as the maximum a posteriori estimate. The prerequisite for the use of such a prior is the success of the optimization stage. The posterior energy corresponding to a PG MRF is generally multimodal and its minimization is particularly problematic. In this context, general forms of simulated annealing rapidly become intractable when the observation operator extends over a large support. In this paper, global optimization is dealt with by extending the graduated nonconvexity (GNC) algorithm to ill-posed linear inverse problems. GNC has been pioneered by Blake and Zisserman in the field of image segmentation. The resulting algorithm is mathematically suboptimal but it is seen to be very efficient in practice. We show that the original GNC does not correctly apply to ill-posed problems. Our extension is based on a proper theoretical analysis, which provides further insight into the GNC. The performance of the proposed algorithm is corroborated by a synthetic example in the area of diffraction tomography.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inversion of large-support ill-posed linear operators using a piecewise Gaussian MRF

We propose a method for the reconstruction of signals and images observed partially through a linear operator with a large support (e.g., a Fourier transform on a sparse set). This inverse problem is ill-posed and we resolve it by incorporating the prior information that the reconstructed objects are composed of smooth regions separated by sharp transitions. This feature is modeled by a piecewi...

متن کامل

Piecewise Differentiable Minimization for Ill-posed Inverse Problems Ing from the National Science Foundation and Ibm Corporation, with Additional Support from New York State and Members of Its Corporate Research Institute. 1

Based on minimizing a piecewise diierentiable lp function subject to a single inequality constraint, this paper discusses algorithms for a discretized regularization problem for ill-posed inverse problems. We examine computational challenges of solving this regularization problem. Possible minimization algorithms such as the steepest descent method, iteratively weighted least squares (IRLS) met...

متن کامل

Lagrangian-based methods for finding MAP solutions for MRF models

Finding maximum a posteriori (MAP) solutions from noisy images based on a prior Markov random field (MRF) model is a huge computational task. In this paper, we transform the computational problem into an integer linear programming (ILP) problem. We explore the use of Lagrange relaxation (LR) methods for solving the MAP problem. In particular, three different algorithms based on LR are presented...

متن کامل

Roof-edge preserving image smoothing based on MRFs

A novel Markov random field (MRF) model is proposed for roof-edge (as well as step-edge) preserving image smoothing. Image surfaces containing roof-edges are represented by piecewise continuous polynomial functions governed by a few parameters. Piecewise smoothness constraint is imposed on these parameters rather than on the surface heights as is in traditional models for step-edges. In this wa...

متن کامل

Bayesian image reconstruction in SPECT using higher order mechanical models as priors

While the ML-EM algorithm for reconstruction for emission tomography is unstable due to the ill-posed nature of the problem. Bayesian reconstruction methods overcome this instability by introducing prior information, often in the form of a spatial smoothness regularizer. More elaborate forms of smoothness constraints may be used to extend the role of the prior beyond that of a stabilizer in ord...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998